Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration.

نویسندگان

  • Katsuhiro Takeda
  • Noriyuki Sakai
  • Hideki Shiba
  • Takayoshi Nagahara
  • Tsuyoshi Fujita
  • Mikihito Kajiya
  • Tomoyuki Iwata
  • Shinji Matsuda
  • Kazuko Kawahara
  • Hiroyuki Kawaguchi
  • Hidemi Kurihara
چکیده

Brain-derived neurotrophic factor (BDNF), for which bovine collagen-derived atelocollagen is used as a scaffold, enhances periodontal tissue regeneration. However, a scaffold that does not contain unknown ingredients is preferable. Since the synthesized high-molecular-weight (HMW)-hyaluronic acid (HA) is safe and inexpensive, we evaluated the efficacy of HMW-HA as a BDNF scaffold. CD44, a major receptor of HA, was expressed in cultures of human periodontal ligament cells, and HMW-HA promoted the adhesion and proliferation of human periodontal ligament cells, although it did not influence the mRNA expression of bone (cementum)-related proteins. The in vitro release kinetics of BDNF from HMW-HA showed that BDNF release was sustained for 14 days. Subsequently, we examined the effect of BDNF/HMW-HA complex on periodontal tissue regeneration in dogs. A greater volume of newly formed alveolar bone and a longer newly formed cementum were observed in the BDNF/HMW-HA group than in the HMW-HA group, suggesting that HMW-HA assists the regenerative capacity of BDNF, although HMW-HA itself does not enhance periodontal tissue regeneration. Neither the poly (lactic-co-glycolic acid) group nor the BDNF/poly (lactic-co-glycolic acid) group enhanced periodontal tissue regeneration. In conclusion, HMW-HA is an adequate scaffold for the clinical application of BDNF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects

This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF...

متن کامل

Synthesis of Polyurethane/Hyaluronic acid/Royal Jelly Electrospun Scaffold and Evaluating its Properties for Wound Healing

Background and purpose: Studies showed that biocompatible and biodegradable materials in tissue engineering can be used to heal wounds. The aim of this study was to fabricate polyurethane/royal jelly/hyaluronic acid scaffold with suitable biological properties for wound healing using electrospinning method. Materials and methods: In this applied experimental study, to make a nanofiber scaffold...

متن کامل

Advanced tissue engineering in periodontal Regeneration

The old wishes of people were to regenerate lost tissues of periodontium that this fact is achieved by gen and cell therapy .Periodontal disease is a chronic inflammation around the tooth by microbes that causes destruction of supporting structure of tissue of tooth such as alveolar bone, cementum and periodontal ligament. For treatment of periodontal diseases we can use the biomaterials which ...

متن کامل

Hyaluronic acid: a promising mediator for periodontal regeneration.

Hyaluronic acid (HA) is a natural-non sulphated high molecular weight glycosaminoglycan that forms a critical component of the extracellular matrix and contributes significantly to tissue hydrodynamics, cell migration and proliferation. The use of HA in the treatment of inflammatory process is established in medical areas such as orthopedics, dermatology and ophthalmology. In the field of denti...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 17 7-8  شماره 

صفحات  -

تاریخ انتشار 2011